Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera.

نویسندگان

  • R Abel
  • J Rybak
  • R Menzel
چکیده

To analyze morphologic and physiological properties of olfactory interneurons in the honeybee, Apis mellifera, antennal lobe (AL) neurons were intracellularly recorded and subsequently labeled with Neurobiotin. Additional focal injections were carried out with cobalt hexamine chloride and dextran fluorescent markers. Olfactory interneurons (projection neurons, PNs) project by means of five tracts, the lateral, the median, and three mediolateral antennocerebral tracts (l-, m-, and ml-ACT, respectively) to the mushroom bodies (MBs) and the protocerebral lobe (PL) of the ipsilateral protocerebrum. Uniglomerular PNs of the m- and l-ACT receiving input from a single glomerulus of the AL also arborize in different regions of the AL. The vast majority of l-ACT innervate the T1 region, whereas m-ACT neurons arborize exclusively in the T2, T3, and T4 regions (T1-4 : AL projection area of sensory cells from the antennae). In the calyces of the MB, uniglomerular PNs form varicosities in the basal ring and the lip region. Individual neurons of both types exhibit unequal innervation within and between the two calyces. In addition, m-ACT fibers ramify more densely within the lip neuropil and show a higher incidence of spine-like processes than l-ACTs. In the PL, l-ACTs arborize exclusively within the lateral horn, whereas some m-ACT neurons innervate a broader region. Multiglomerular neurons of the ml-ACT leave the AL by means of three subtracts (ml-ACT 1-3). Two different types can be distinguished according to their protocerebral target areas: ml-ACTs projecting to the lateral PL (LPL) and to the neuropil around the alpha-lobe (tracts 2 and 3) and neurons projecting only to the LPL (tract 1). Intracellular recordings indicate that both l- and m-ACT neurons respond to general odors but with different response properties, indicating that odor information is processed in parallel pathways with different functional characteristics. Just like m-ACT neurons, ml-ACT neurons respond to odors with complex activity patterns. Bilateral interneurons, originating in the suboesophageal ganglion, connect glomeruli of both AL, and send an axon through the m-ACT in each hemisphere of the brain, terminating in the lip region of the calyces. These neurons respond to contact chemical stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keeping their distance? Odor response patterns along the concentration range

We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the...

متن کامل

Molecular identification and phylogenetic analysis of Lactobacillus and Bifidobacterium spp. isolated from gut of honeybees (Apis mellifera) from West Azerbaijan, Iran

Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and phylogenetic analysis were used for molecular identification of lactic acid bacteria (LABs) isolated from Apis mellifera. Eighteen honeybee workers were collected from three different apiaries in West Azerbaijan. LABs from the gut of honeybees were isolated and cultured using routine biochemical proce...

متن کامل

Genetic structure of Caspian Sea southern area honeybee populations, based on microsatellite polymorphism

Genetic diversity is a key component of ecosystems. The aim of the present study was to evaluate the genetic diversity of Iranian native honeybee colonies (Apis mellifera meda L.) located in the northern region. Colonies from 24 locations have been analyzed using microsatellite markers. Samples were collected from Caspian Sea southern area (north of Iran). Six microsatellite markers (A28, A29, ...

متن کامل

Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera).

The primary olfactory neuropil, the antennal lobe (AL) in insects, is organized in glomeruli. Glomerular activity patterns are believed to represent the across-fibre pattern of the olfactory code. These patterns depend on an organized innervation from the afferent receptor cells, and interconnections of local interneurons. It is unclear how the complex organization of the AL is achieved ontogen...

متن کامل

A Survy on Deletion and Insertions Presented in MRJP3 (Major Royal Jelly Protein 3) Gene in Isfahan Persian Hony Bee (Apis Mellifera Meda)

Objectives: Royal jelly (RJ), a secretion of both the hypopharyngeal and mandibular glands of nurse workers, is believed to play a central role in honeybee queen development. Important component of royal jelly are proteins which form about 50% of the dry mass of RJ. Major royal jelly proteins (MRJPs) are the dominant proteinaceous component of royal jelly and constitute about 82-90% of total pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 437 3  شماره 

صفحات  -

تاریخ انتشار 2001